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ABSTRACT

Recent innovations, such as automated driving and smart mobility, have elevated the safety-criticality of automotive
systems due to the impact of these technologies on the traffic behavior and safety. New safety validation and assess-
ment methodologies are required to provide the level of assurance that matches the societal impact of these systems.
The objective of this paper is to introduce a novel method for assessment and quantification of the risk of a driving
scenario considering the operational design domain. For our proposed method, we assume that a scenario consists
of activities (performed by different actors) and environmental conditions that leads to a potentially hazardous conse-
quence. The risk of a driving scenario is the product of the probability of the exposure of a scenario and the severity
of the hazardous consequence of that scenario. We introduce a systematic method for calculating the probability of
exposure, where we assume a causal relation between the activities that constitute a scenario. By making educated
assumptions on the dependencies among the different activities and environmental conditions, we simplify the calcula-
tion of the probability of the exposure. For estimating the severity, we employ Monte Carlo simulations. We illustrate
the use of our proposed method by applying it to an example of a collision avoidance system in a cut-in scenario. We
use naturalistic driving data acquired from field studies on the Dutch highways to determine the risk. The presented
example illustrates the potential of our proposed risk estimation method. Using our proposed method, we can compare
the safety criticality of various scenarios in a quantitative manner, which can be used as a safety metric for evaluating
automated driving systems. This can lead to stronger justification for design decisions and test coverage for developing
automated vehicle functionalities.



INTRODUCTION

New developments in the automotive industry towards higher levels of automation are introducing new safety con-
cerns for vehicles. Test procedures and performance measures need to be adapted for evaluation of vehicles with an
Automated Driving (AD) system. The safety and reliability of the AD vehicles must be validated in principle for
all possible traffic situations that an AD system may encounter on the road, before these systems can be taken into
production.

Scenario-based safety validation for automated driving is one of the proposed approaches that is broadly supported
by the automotive community. This is reflected in the ISO/PAS 21448:2019 standard on the safety of th intended func-
tionality (SOTIF) [1]. Related projects in Germany (Pegasus [2]), The Netherlands (StreetWise [3]), and Singapore
[4] strongly support this approach. Risk assessment is an essential component of the safety validation as it indicates
the acceptance criteria of the AD system.

The ISO 26262:2018 [5] captures the state of the art in automotive functional safety. It defines the safety lifecycle
and the related safety activities such as Hazard Analysis and Risk Assessment. Other methodologies, such as STPA
[6], give guidelines on safety engineering based on systems theory. From the mentioned sources, the only one that
offers a framework for measuring risk is ISO 26262. It defines risk as:

Definition 1 (Risk [5]) The combination of the probability of occurrence of harm and the severity of that harm.

ISO 26262:2018 gives guidelines to assess risk based on vehicle level hazardous events. A hazardous event is the
combination of a vehicle level hazard with operational situation or scenario. It requires analyzing each hazardous event
risk individually based on three parameters of Severity, Probability of exposure, and Comparability. The combination
of these parameters contributes to constructing the Automotive Safety Integrity Level (ASIL). In this framework, each
parameter is quantified in three or four levels that construct the ASIL ranking A, B, C, D, and QM, where ASIL A
represents the least critical level and in ascending order, ASIL D the most critical level. Quality Management (QM)
means that the identified hazard is not critical enough for the safety processes, and the quality management system of
the manufacturer should suffice for reducing the risk. We depict the ASIL ranking graph in Figure 1.

The ASIL methodology for risk assessment relies on the experts’ judgments of the three risk parameters. The
ISO 26262:2018 provides some general guidelines for assessing these parameters. However, the assessment is for the
most part subjective and dependent on the experts who carry it out. Moreover, it is only capable of evaluating the risk
of a single (hazardous) event within the context of a generic operational situation.

The alternative methodology proposed in STPA has the means for providing a quantitative risk assessment as it
provides the means for connecting the hazard identification to a control system and its characteristics. However, this
method skips the risk assessment entirely and does not offer any solutions.

We argue that as the automotive systems move towards higher automation levels, we require more formal methods
for risk assessment. By quantifying risk assessment, we reduce the risk of subjective errors in the judgment. Risk
quantification is a step towards run-time risk assessment for the autonomous systems.

The objective of this paper is to introduce a method for assessment and quantification of the risk of a driving
scenario taking into account the entire operational situations and their relations. This is achieved by calculating the
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Figure 1: ASIL risk assessment graph.



Table 1: The terms and definitions.
Term Definition

Severity An estimate of the extent of harm to one or more individuals that can occur in a potentially
hazardous event [5]

Exposure The state of being in a driving scenario
Risk The combination of the probability of occurrence of harm and the severity of that harm [5]
Condition The constant parameters describing the environmental aspects of the operational design do-

main1

Actor An element of a scenario acting on its own behalf [8]
Scenario A quantitative description of the activities of the ego vehicle and other actors and the conditions

from the static environment

probability of exposure to a certain scenario through analysis of real-world driving data. Next, we employ simulations
to estimate the severity of the potential hazardous consequence of a scenario.

The paper is structured as follows. We first present the proposed method for estimating the risk quantitatively.
Next, we perform a case study to illustrate the method using real-world data. We end the paper with a discussion and
a conclusion.

PROPOSED RISK ESTIMATION METHOD

In the Hazard Analysis and Risk Assessment (HARA) required by the ISO 26262 standard, the estimation of Automo-
tive Safety Integrity Level (ASIL) is calculated based on a so-called single specific hazardous event [5]. Although the
operational situation in which this single event occurs as well as the operating mode are considered in the analysis, still
the proceeding and successive events are not taken into account. In this paper, we propose a new method to estimate
the risk of a certain scenario considering the whole chain of activities and conditions that constitute the scenario. The
estimated risk is based on real-world driving data. To estimate the risk, we quantify the exposure and the severity. In
Table 1, we present the definitions of the terms that are used in our proposed methodology.

As explained in Table 1, a scenario consist of a set of conditions and activities, denoted by A and C, respectively.
We formulate the exposure as the average number of occurrences of the activitiesA under the conditionsC, denoted by
λA,C . The severity is the likelihood of the potential hazardous consequenceR given the activitiesA and the conditions
C, denoted by the conditional probability P (R|A,C). The risk is computed as the multiplication of the exposure and
the severity.

The proposed method is summarized in Figure 2. To compute the exposure, we calculate the likelihood of the
conditions, denoted by P (C), and the conditional likelihood of the activities, denoted by P (A|C), based on real-
world driving data. This is explained in detail in the next section. For the estimation of the severity, we consider all
possible scenarios that are subject to a set of conditions C and consist of the activities A. Therefore, we parametrize
the scenarios using the parameter vector θ. Based on the real-world driving data, the probability density function of the
parameters, denoted by P (θ|A,C), is estimated. Next, using simulations, we estimate P (R|θ,A,C), the likelihood
of a potential hazardous consequence R given a parametrized scenario. The details of the estimation of the severity
are presented after the details of the estimation of the exposure. Finally, we describe how the risk is estimated based
on the estimated exposure and severity.

Calculate exposure
The scenarios are subject to nC conditions, denoted by C1, . . . , CnC

. For the sake of brevity, all conditions together
are denoted by C, i.e., P (C1, . . . , CnC

) = P (C). Many of these conditions might be based on the operational design
domain of the AD system and might include conditions with respect to the infrastructure, weather conditions, lighting
conditions, and geographical locations.

The first step is to compute the joint probability of the conditions, i.e., P (C). In case these conditions are inde-
pendent, the probability can be computed by simply multiplying the individual likelihoods for each condition, i.e.,

1The operational design domain refers to the “operating conditions under which a given driving automation system or feature thereof is specifi-
cally designed to function” [7].
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Figure 2: Proposed method for quantifying the risk. The risk is a multiplication of the exposure and the severity.

P (C) = P (C1) · . . . ·P (CnC
). This, however, might not necessarily be the case, which requires either to compute the

joint probability or to compute conditional probabilities. In some cases, it might also be reasonable to simply assume
that the likelihood of certain conditions are independent.

Note that the the defined conditions might not be the same as the conditions under which the data is collected that
is used to compute P (C). This might require additional assumptions, see our case study for examples.

To calculate the exposure, the average number of occurrences of the activities that constitute the scenarios within
a certain time interval need to be estimated. Let nA denote the number of activities, such that A1, . . . , AnA

denote the
activities. For the sake of brevity, all activities together are denoted by A.

Without loss of generality, we assume that the time interval is an hour. To estimate the number occurrences of
the activities, the data for which the conditions C are satisfied are analyzed. The average number of occurrences of
the activities A for each hour of driving for which the conditions C are satisfied is denoted by λA|C . Next, we can
calculate the average number of occurrences of the activities A under the conditions C for each hour of driving:

λA,C = λA|C · P (C). (1)

Regarding the scenarios consisting of conditions C and activities A, we assume the following:

• The occurrence of one scenario consisting of activities A and conditions C does not affect the probability that a
second scenario consisting of activities A and conditions C occurs.

• The rate at which a scenario consisting of activitiesA and conditionsC occurs is constant. I.e., λA,C is constant.

• Two scenarios consisting of activities A and conditions C cannot occur at exactly the same time instant.

Based on these assumptions, the number of occurrences of scenarios consisting of activities A and conditions C is
distributed according to the Poisson distribution:

P (k times A,C in an hour) = exp {−λA,C}
λkA,C

k!
. (2)

Severity

The first step towards estimating the severity is to parametrize the scenarios with a parameter vector θ ∈ Rd. The
parametrization enables the generation of infinitely many unique individual test cases that resemble the scenarios
found in naturalistic driving [3], [9].

In case the parameters are dependent, which is often the case, it is important that the number of parameters is
limited to avoid the curse of dimensionality [10]. This often requires some assumptions. An example is presented in
our case study in the next section.



To estimate the probability density function (pdf) of the parameter vector θ, i.e., P (θ|A,C), either parametric
models, non-parametric models, or a combination of the two can be used. In case of parametric models, a certain
functional form of the pdf is assumed. For example, it might be assumed that the pdf can be modeled using a Gaussian
distribution. In this paper, we present a non-parametric approach using Kernel Density Estimation (KDE) [11], [12].
Using KDE, there is no assumption on the functional form of the pdf because the shape of the pdf is automatically
computed. With KDE, the estimated pdf is given by

P (θ|A,C) = 1

nhd

n∑
i=1

K

(
θ − θi
h

)
. (3)

Here, K(·) is an appropriate kernel function and h denotes the bandwidth. From the data, n scenarios are extracted
and each scenario is parametrized with θi. The choice of the kernel K(·) is not as important as the choice of the
bandwidth h [13]. Often, a Gaussian kernel is used, which is given by

K(u) =
1

(2π)
d/2

exp

{
−1

2
‖u‖2

}
, (4)

where ‖u‖2 denotes the squared 2-norm of u, i.e., uTu.
The bandwidth h controls the amount of smoothing. For the kernel of Eq. (4), the same amount of smoothing is

applied in every direction, although this can easily be extended to a multi-dimensional bandwidth, see, e.g., [14], [15].
There are many different ways of estimating the bandwidth, ranging from simple reference rules like, e.g., Scott’s rule
of thumb [10] or Silverman’s rule of thumb [16] to more elaborate methods; see [13], [17]–[19] for reviews of different
bandwidth selection methods.

Let R denote a potential hazardous consequence of a scenario. We define the severity of a scenario with activities
A and conditions C as the probability of R, given the activities A and C, i.e., P (R|A,C). We cannot evaluate
P (R|A,C) directly, because the outcome of a scenario highly depends on the parametrization θ. Therefore, we
estimate P (R|θ,A,C) through a simulation of the scenario with parameters θ. Using P (θ|A,C) from Eq. (3), we can
compute

P (R, θ|A,C) = P (R|θ,A,C) · P (θ|A,C). (5)

To obtain P (R|A,C), we need to integrate Eq. (5) over θ, i.e.,

P (R|A,C) =
∫
Rd

P (R|θ,A,C) · P (θ|A,C) dθ. (6)

One approach to evaluate the integral of Eq. (6) is to perform Monte Carlo simulations. For sufficiently large N ,
we have

P (R|A,C) ≈ 1

N

N∑
k=1

P (R|θk, A,C), θk ∼ P (θ|A,C). (7)

To improve the accuracy of Eq. (7), importance sampling can be used where the parameters θ are drawn from
another distribution with a focus on the critical scenarios, see, e.g., [9].

Calculating the risk
Analogous to the exposure, we define the risk as the number of occurrences of the hazardous consequence R in a
scenario consisting of activities A and conditions C in a certain time interval. Let λ denote the average number of
these occurrences in an hour of driving. The chain rule of probability tells us that this equals the product of λA,C (i.e.,
the exposure) and P (R|A,C) (i.e., the severity):

λ = λA,C · P (R|A,C) (8)

Analogous to the number of occurrences of a scenario consisting of activities A and conditions C, we assume that
the number of occurrences of a harmful outcome R in a scenario consisting of activities A and conditions C can be
modeled using a Poisson distribution:

P (k times R,A,C in an hour) = exp {−λ} λ
k

k!
. (9)



Using Eq. (9), to calculate the probability of not having the harmful outcomeR in a scenario consisting of activities
A and conditions C we simply need to use k = 0:

P (no R,A,C in one hour) = exp {−λ} . (10)

CASE STUDY

In this section, we present a case study to illustrate the method of quantifying the risk for a cut-in scenario. We will
first describe the cut-in scenario and the use case. The actual system for which the risk is computed is presented in
next. After these two steps, we will go through the steps of our proposed method.

The cut-in scenario and the use case
We want to quantify the risk for cut-in scenarios that are linguistically described as follows: while the ego vehicle
drives at a moderate to high speed while staying in its lane, another vehicle cuts into the lane of the ego vehicle, such
that this vehicle becomes the ego vehicle’s lead vehicle. Furthermore, the ego vehicle needs to brake to prevent a
collision.

For the quantification of the risk, 60 hours of data (see also [9]) are collected by driving a specific route in and
between Eindhoven and Helmond, The Netherlands, with twenty different drivers, each driving the route twice. There-
fore, it is assumed that the use case of the AD system is driving this route. We will use the data for the estimation of
the risk. Hence, we will make use of the following assumption:

Assumption 1 The recorded naturalistic driving data is representative for what a vehicle with the AD system might
encounter along the same route.

System-under-test
To reduce efforts for the assessment, often simulations are employed. However, even simulations can consume con-
siderable time, as these simulations might run real-time [20] or slower when a higher level of detail is used [21]. For
our method, we will simplify the simulations, such that the total required time on a common computer is in the order
of minutes. Since we are interested in approximate results, a high level of detail is not required.

To simplify the system-under-test, it is assumed that the system’s desired acceleration is similar to the adaptive
cruise control defined in [9], i.e.,

u(t) = kd(v(t))(d(t)− τhv(t)− s0) + kv

(
ḋ(t)− ha(t)

)
, (11)

with

kd(v(t)) = kd1 + (kd2 − kd1) exp
{
−v(t)

2

2σd

}
. (12)

Here, v is the speed of the ego vehicle, d denotes the clearance between the ego vehicle and its predecessor, i.e., the
vehicle that performs the cut-in. The relative speed is denoted by ḋ and a refers to the acceleration of the ego vehicle.
The ego vehicle is modeled using a first order model with a time delay, i.e.,

τ ȧ(t) + a(t) = u(t− θ). (13)

Furthermore, the deceleration is limited at −6ms−2. A description of the constants of Eqs. (11) to (13) are listed in
Table 2. The controller runs at 100 Hz.

Note that there is no intervention of a human:

Assumption 2 The ego vehicle is fully controlled by the automation system as defined by Eqs. (11) and (12). Hence,
there is no intervention of a human.



Table 2: The constants used for the simple automation system of Eqs. (11) to (13).

Parameter Description Value

τh Desired headway time 2.0 s
s0 Safety distance 1.5 m
kd1 Distance gain at high speed 0.7 s−2

kd2 Distance gain at low speed 2.0 s−2

σd Shaping coefficient of distance gain 5ms−1

kv Speed difference gain 0.35 s−1

τ Time constant of the vehicle model 0.1 s
θ Delay of the vehicle response 0.2 s

Calculate exposure
The cut-in scenarios are subject to the following conditions:

• C1: The speed of the ego vehicle is within the range of 60 km/h and 130 km/h.

• C2: There are no restrictions on the weather conditions.

• C3: There are no restrictions on the lighting conditions.

Obviously, because there are no restrictions to the weather and lighting conditions, we have P (C2, C3) = 1. For
the first condition, we can use the data to estimate the likelihood. The data, however, has been recorded during sunny
weather at daylight. Therefore, we need to following assumption.

Assumption 3 Let C ′2 and C ′3 denote the conditions of having sunny weather and daylight, respectively. Then we
have P (C1|C2, C3) = P (C1|C ′2, C ′3).

From the data, it appeared that P (C1|C ′2, C ′3) = 0.20. Using Assumption 3, we have

P (C) = P (C1, C2, C3) = P (C1|C ′2, C ′3) · P (C2, C3) = 0.20. (14)

The cut-in scenarios consist of the following activities:

• A1: The ego vehicle is lane following.

• A2: The target vehicle is driving in an adjacent lane in the same direction as the ego vehicle.

• A3: After activity A2, the target vehicle performs a lane change towards the lane of the ego vehicle, such that
the ego vehicle needs to brake.

• A4: The automation system detects the cut-in.

• A5: After activity A4, the automation system activates the brakes of the ego vehicle.

The likelihood of the activities A1, A2, and A3 can be estimated using the data. It is assumed that the ego vehicle
needs to brake if the target vehicle is driving slower and the headway time is less than three seconds. In case of a
slower target vehicle with a larger headway time, the scenario is referred to as a gap closing scenario [22], [23].

For simplicity, we assume the following:

Assumption 4 The automation system always detects the cut-in and activates the brakes after detecting the cut-in,
such that P (A4, A5|A1, A2, A3, C) = 1.

Using this assumption, we can compute λA|C by detecting the number of occurrences of the activities A1, A2, and
A3 under the conditions C. Based on the dataset, we have λA|C = 9.9 h−1, i.e., in each hour that the ego vehicle
is driving in a speed range of 60 km/h and 130 km/h, there are on average 9.9 cut-ins with the target vehicle driving
slower than the ego vehicle, such that the headway time after the cut-in is less than three seconds. From this, it simply
follows that

λA,C = λA|C · P (C) = 2.0. (15)
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Figure 3: Histogram of the data of the parameters (bars) and their estimated marginal probabilities (lines).

Calculating severity
To limit the number of parameters, we assume the following:

Assumption 5 The ego vehicle is driving at a constant speed at the moment of the cut-in of the target vehicle, i.e., the
moment that the target vehicle enters the lane of the ego vehicle.

Assumption 6 The target vehicle is driving at a constant speed.

Both assumptions can be justified using the data. In case of the ego vehicle, the average acceleration at the moment
of the cut-in is −0.29ms−2 and the standard deviation equals 0.50ms−2. In case of the target vehicle, the average
deceleration at the moment of the cut-in is 0.05ms−2 and the standard deviation equals 0.37ms−2. As a result, the
scenario is parametrized using d = 3 parameters:

1. The clearance between the target vehicle and the ego vehicle at the moment of the cut-in, i.e., the moment than
the target vehicle enters the lane of the ego vehicle.

2. The speed of the ego vehicle at the moment of the cut-in.

3. The speed of the target vehicle throughout the whole scenario.

A histogram of the data of the parameters is shown in Figure 3. The probability density function is estimated
using the KDE of Eq. (3) with the Gaussian kernel of Eq. (4). Before applying KDE, the data is scaled, such that the
standard deviation equals one for each parameter. We use leave-one-out cross validation to compute the bandwidth
h (see also [24]) because this minimizes the Kullback-Leibler divergence between the real underlying pdf and the
estimated pdf [13], [25]. The resulting bandwidth equals h = 0.198. The marginal probability distributions coming
from the resulting joint distribution, i.e. the KDE, are shown in Figure 3 by the black lines.



Let R denote the result of having a collision. Given a certain parameter vector θ, we have P (R|θ,A,C) = 1
if the outcome of the simulation is a collision and P (R|θ,A,C) = 0 otherwise. For the simulation, we used the
forward Euler method with a step size of 0.01 s, similar as the sample time of the controller. On a regular computer,
approximately 2000 simulations are performed in a second. We performed a million simulations, i.e., N = 106. In
total, 28 simulations ended with a collision, thus, according to Eq. (7), we have:

P (R|A,C) = 2.8 · 10−5. (16)

Calculating the risk
Let λ denote the average number of collisions with a cut-in scenario as described earlier along the specified route for
a vehicle with the automation system as described above. Using Eq. (8), we have:

λ = λA,C · P (R|A,C) = 5.5 · 10−5 h−1. (17)

Using Eq. (10), the probability of having no collision in a cut-in scenario as described above during an hour of
driving is

P (no R,A,C during an hour) = 0.999945. (18)

By solving the Poisson distribution of Eq. (9) for λ with k = 0, we can also conclude that with 95 % certainty,
there will be no collision in a cut-in scenario as described earlier when driving 925 h.

DISCUSSION

We illustrated the applicability of our risk estimation method through an example in the previous section. However,
our method has some limitations as well. As an example, many assumptions are made to simplify the calculation
of estimated risk or because there are unknowns due to lack of data. These assumptions reduce the accuracy of the
estimated risk. Another limitation is that we applied the proposed method for only one type of driving scenario, while
the full potential can be better demonstrated by applying the method to a wider range of scenarios.

Despite the mentioned limitations, we believe that our proposed method takes an important step towards objective
hazard and risk analysis as we summarize in the following points:

• All the assumptions that were made for estimating the risk are explicit and based on measured data. By mak-
ing the assumptions explicit, it is much clearer why a certain risk is associated with — in this case — a cer-
tain/specific scenario.

• Because our proposed method explicates all the steps and assumptions that lead to a certain estimated risk, it is
easily possible to update the risk when more information of the system is known or when more data is available.

• The systematic quantification of the risk provides additional objectified trust in the safety analysis that depends
on the availability of data rather than experts judgment.

• The method can be scaled up to be applied to multiple scenarios and operational situations with small modifica-
tions.

CONCLUSIONS

As automotive systems move towards higher automation levels, we require formal methods for risk assessment. Cur-
rently, however, measuring risk is often based on experts’ judgments. Therefore, we propose a method for quantifying
the risk assessment as to reduce the risk of subjective errors in the judgment. Our proposed method estimates the
risk of a driving scenario while considering the entire operational situations and their relations through analysis of
real-world driving data and simulations of the automation system. Our systematic approach for quantifying the risk
provides additional trust in the safety analysis, as it depends on the available data rather than experts’ judgment.

It remains future work to apply the method for different scenarios to show the full potential of the method. We
also aim for extending our method by considering, next to the exposure and the severity, the controllability [26].



REFERENCES

[1] ISO/PAS 21448, “Road vehicles — Safety of the intended functionality,” International Organization for Stan-
dardization, Tech. Rep., 2019.
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